
Deep Learning
lecture 3

Supervised Learning (2)
Yi Wu, IIIS

Spring 2025
Mar-3

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 1

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua

Un
iv
er
si
ty

Overview of Lecture 2

• Learning a multi-layer perceptron
• Backpropagation for efficient gradient descent

• Forward pass
• Backward pass
• Differentiable layers
• Learning rate

• Basic components
• Linear layer
• Softmax layer and cross-entropy loss
• Activation

• Gradient vanishing issue and activation function design
• Subgradients

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 3

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Overview of Lecture 2

• Convolutional Neural Network
• Scanning for shift invariance
• The convolution filter

• Recursive scanning
• Fewer parameters and larger receptive field

• Pooling for jittering
• Padding for retaining output size
• 1D convolution

• Time delay neural network or temporal CNN

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 4

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Today’s Lecture

• Get your hands more dirty!

• Part 1: design a better learning algorithm
• More tricks to play with gradients

• Part 2: more tricks for practical classification
• Start to get professional in tuning!

• Part 3: advanced architectures
• Part 4: cloud computing tutorial

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 5

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Today’s Lecture

• Get your hands more dirty!

• Part 1: design a better learning algorithm
• More tricks to play with gradients

• Part 2: more tricks for practical classification
• Start to get professional in tuning!

• Part 3: advanced architectures
• Part 4: cloud computing tutorial

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 6

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Recap: Training a Neural Network

• Problem Statement
• Given training data 𝑋𝑋 = { 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 }
• Design a neural network 𝑦𝑦 = 𝑓𝑓(𝑥𝑥;𝜃𝜃)
• Loss function 𝐿𝐿 𝜃𝜃 = 1

𝑁𝑁
∑𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃 ;𝑦𝑦𝑖𝑖

• Goal: minimize 𝐿𝐿(𝜃𝜃) w.r.t. 𝜃𝜃

• Non-Convex Optimization!

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 7

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Recap: Training a Neural Network

• The Gradient Descent Algorithm for 𝑓𝑓 𝑋𝑋
• Choose 𝑋𝑋0

• 𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 𝜂𝜂𝑘𝑘∇𝑋𝑋𝑓𝑓 𝑋𝑋𝑘𝑘

• Convergence: 𝑓𝑓 𝑋𝑋𝑘𝑘+1 − 𝑓𝑓 𝑋𝑋𝑘𝑘 < 𝜖𝜖

• Learning rate 𝜂𝜂𝑘𝑘 is critical!

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 8

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Convex Optimization

• How to set the learning rate 𝜂𝜂?
• Get inspired from the convex setting

• Global optimum <-> ∇𝑓𝑓 𝑥𝑥 = 0

• Convex Function 𝑓𝑓(𝑥𝑥)
• 𝑓𝑓 𝑥𝑥 + 𝑦𝑦 ≤ 1

2
𝑓𝑓 𝑥𝑥 + 𝑓𝑓 𝑦𝑦

• ∇2𝑓𝑓(𝑥𝑥) ≽ 0

• Intuition: small learning rate
• What’s the threshold?

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 9

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Convex Optimization

• Definition: Lipschitz continuous
• A function 𝑔𝑔(𝑥𝑥) is Lipschitz continuous: |𝑔𝑔 𝑥𝑥 − 𝑔𝑔 𝑦𝑦 | ≤ 𝐿𝐿|𝑥𝑥 − 𝑦𝑦|

• Assumption: a “smooth” convex function 𝑓𝑓 𝑥𝑥
• 𝑓𝑓(𝑥𝑥) is convex
• Gradient of 𝑓𝑓(𝑥𝑥) is Lipschitz continuous: ∇𝑓𝑓 𝑥𝑥 − ∇𝑓𝑓 𝑦𝑦 ≤ 𝐿𝐿|𝑥𝑥 − 𝑦𝑦|
• “Gradient can't change arbitrarily fast”

• ∇2𝑓𝑓(𝑥𝑥) ≼ 𝐿𝐿𝐿𝐿
• A reasonably weak assumption

• Machine learning, neural networks, etc

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 10

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Convex Optimization

• Definition: Lipschitz continuous
• A function 𝑔𝑔(𝑥𝑥) is Lipschitz continuous: |𝑔𝑔 𝑥𝑥 − 𝑔𝑔 𝑦𝑦 | ≤ 𝐿𝐿|𝑥𝑥 − 𝑦𝑦|

• Assumption: a “smooth” convex function 𝑓𝑓 𝑥𝑥
• 𝑓𝑓(𝑥𝑥) is convex
• Gradient of 𝑓𝑓(𝑥𝑥) is Lipschitz continuous: ∇𝑓𝑓 𝑥𝑥 − ∇𝑓𝑓 𝑦𝑦 ≤ 𝐿𝐿|𝑓𝑓 𝑥𝑥 − 𝑓𝑓(𝑦𝑦)|
• “Gradient can't change arbitrarily fast”

• ∇2𝑓𝑓(𝑥𝑥) ≼ 𝐿𝐿𝐿𝐿
• A reasonably weak assumption

• Machine learning, neural networks, etc
• Remark: ReLU v.s. ELU

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 11

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Convex Optimization

• Descent Lemma
• 𝑓𝑓 𝑦𝑦 ≤ 𝑓𝑓 𝑥𝑥 + ∇𝑓𝑓 𝑥𝑥 𝑇𝑇 𝑦𝑦 − 𝑥𝑥 + 𝐿𝐿

2
𝑥𝑥 − 𝑦𝑦 2

• Prove it in your homework

• A convex quadratic upper bound on 𝑓𝑓(𝑥𝑥)
• Minimize the upper bound of 𝑦𝑦
• 𝜂𝜂 = 1

𝐿𝐿
(optimal)

• Remark: any 0 < 𝜂𝜂 < 2
𝐿𝐿
, decreases 𝑓𝑓(𝑥𝑥)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 12

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Convex Optimization

• Convergence Rate with constant learning rate 𝜂𝜂 = 1
𝐿𝐿

• 𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 1
𝐿𝐿
∇𝑋𝑋𝑓𝑓 𝑋𝑋𝑘𝑘

• 𝑓𝑓 𝑋𝑋𝑘𝑘+1 ≤ 𝑓𝑓 𝑋𝑋𝑘𝑘 − 1
2𝐿𝐿

∇𝑓𝑓 𝑋𝑋𝑘𝑘 2
(decent lemma)

• ∇𝑓𝑓 𝑋𝑋𝑘𝑘 2 ≤ 2𝐿𝐿 𝑓𝑓 𝑋𝑋𝑘𝑘 − 𝑓𝑓 𝑋𝑋𝑘𝑘+1 (progress bound)

• 𝑘𝑘 min
𝑖𝑖=0…𝑘𝑘

∇𝑓𝑓 𝑋𝑋𝑖𝑖 2 ≤ 2𝐿𝐿 𝑓𝑓 𝑋𝑋0 − 𝑓𝑓 𝑋𝑋∗

• For 𝑋𝑋𝑘𝑘 with ∇𝑓𝑓 𝑋𝑋𝑘𝑘 2 ≤ 𝜖𝜖
• 𝑘𝑘 = 𝑂𝑂 1

𝜖𝜖
, a sublinear convergence rate

• Also hold for non-convex function
• Saddle point or local optimum (Refer to your ML course slides!)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 13

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Convex Optimization

• How to estimate 𝐿𝐿 ?
• Adaptive Learning Rate with Line Search

• Start with a large learning rate 𝜂𝜂
• Decrease if some condition unsatisfied

• Naïve solution: ensure function value is decrease

• Armijo condition: 𝑓𝑓 𝑤𝑤 − 𝜂𝜂∇𝑓𝑓 𝑤𝑤𝑘𝑘 ≤ 𝑓𝑓 𝑤𝑤𝑘𝑘 − 𝜂𝜂 ⋅ 𝛾𝛾 ∇𝑓𝑓 𝑤𝑤𝑘𝑘 2
for 𝛾𝛾 ∈ 0, 1/2

(backtracking line-search)
• And more (e.g., Wolfe conditions, etc, take a convex optimization course!)

• Practical Solution
• If performance is not decreasing on the validation set, decrease learning rate

by 𝜂𝜂 ← 𝛼𝛼 ⋅ 𝜂𝜂

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 14

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Strongly Convex Functions

• Better results for convex functions?
• Strongly convexity (for some 𝜇𝜇 > 0)

𝑓𝑓 𝑦𝑦 ≥ 𝑓𝑓 𝑥𝑥 + ∇𝑓𝑓 𝑥𝑥 𝑇𝑇 𝑦𝑦 − 𝑥𝑥 +
𝜇𝜇
2
𝑦𝑦 − 𝑥𝑥 2

• A quadratic lower bound!

• Better rate for 𝐿𝐿-smooth strongly convex function
• 𝐿𝐿𝐿𝐿 ≽ ∇2𝑓𝑓(𝑥𝑥) ≻ 0

Prove it in your homework

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 15

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Strongly Convex Functions

• Linear convergence on strongly convex 𝐿𝐿-smooth function
• For 𝑓𝑓 𝑋𝑋𝑘𝑘 − 𝑓𝑓∗ ≤ 𝜖𝜖, we have 𝑘𝑘 = 𝑂𝑂 log 1

𝜖𝜖

• Strong convexity is good!
• A quadratic lower-bound
• Bounded sub-optimality: progress is at least a fraction of max sub-optimality

• (very unofficial) Justification for weight decay (l2-norm)
• 𝑓𝑓 𝑥𝑥 → 𝑓𝑓 𝑥𝑥 + 𝛼𝛼|𝑥𝑥|2 convex strongly convex
• Remark: adding regularizations often gives you better analytical properties

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 16

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Second-Order Optimization

• Can we do better for strongly convex functions?
• Recap: 𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 1

𝐿𝐿
∇𝑋𝑋𝑓𝑓 𝑋𝑋𝑘𝑘

• We use a fixed learning rate for all the coordinates
• Is this optimal?

• Imagine a 2-dimensional quadratic function
• 𝑦𝑦1 = 𝑎𝑎𝑥𝑥12 + 𝑏𝑏𝑥𝑥22

• Different optimal learning
 rate for each axis

• 𝑦𝑦2 = 𝑎𝑎𝑥𝑥12 + 𝑏𝑏𝑥𝑥22 + 𝑐𝑐𝑥𝑥1𝑥𝑥2
• 𝑦𝑦 = 1

2
𝑋𝑋𝑇𝑇𝐴𝐴𝑋𝑋 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐

• 𝑦𝑦∗ = 1
2
�𝑋𝑋𝑇𝑇 �𝑋𝑋 + 𝑏𝑏 �𝑋𝑋 + 𝑐𝑐

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 17

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Second-Order Optimization

• Scaling the axis (quadratic function case)
• 𝑓𝑓(𝑋𝑋) = 1

2
𝑋𝑋𝑇𝑇𝐴𝐴𝑋𝑋 + 𝑏𝑏𝑋𝑋 + 𝑐𝑐 with 𝐴𝐴 ≻ 0

• �𝑋𝑋 = 𝐴𝐴0.5𝑋𝑋

• Gradient descent on 𝑓𝑓(�𝑋𝑋)
• �𝑋𝑋𝑘𝑘+1 = �𝑋𝑋𝑘𝑘 − 𝜂𝜂∇𝑓𝑓(�𝑋𝑋𝑘𝑘)

• Modified update rule
• 𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 𝜂𝜂𝐴𝐴−1∇𝑓𝑓 𝑋𝑋𝑘𝑘

• Newton’s method

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 18

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Second-Order Optimization

• General 𝐿𝐿-smooth strongly convex functions?
• Generalized Newton’s method
• Taylor’s expansion (progress bound)

𝑓𝑓 𝑦𝑦 ≤ 𝑓𝑓 𝑥𝑥 + ∇𝑓𝑓 𝑥𝑥 𝑇𝑇 𝑦𝑦 − 𝑥𝑥 + 𝑦𝑦 − 𝑥𝑥 𝑇𝑇∇2𝑓𝑓(𝑥𝑥)(𝑦𝑦 − 𝑥𝑥)
• Newton’s method to optimize this upper-bound
• 𝐿𝐿-smoothness gives you an improvement guarantee!

• Second-order optimization
• 𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 𝜂𝜂𝑘𝑘∇2𝑓𝑓 𝑋𝑋𝑘𝑘 −1∇𝑓𝑓(𝑋𝑋𝑘𝑘)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 19

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Second-Order Optimization

• Convergence (homework)

• Strongly convex 𝑓𝑓(𝑋𝑋) with Lipschitz Hessian, then we have quadratic
convergence

• Example:

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 20

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Second-Order Optimization

• Convergence
• Strongly convex 𝑓𝑓(𝑋𝑋) with Lipschitz Hessian, then we have quadratic

convergence

• Example:

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 21

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Second-Order Optimization

• Convergence
• Strongly convex 𝑓𝑓(𝑋𝑋) with Lipschitz Hessian, then we have quadratic

convergence

• Example:

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 22

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Second-Order Optimization

• Convergence
• Strongly convex 𝑓𝑓(𝑋𝑋) with Lipschitz Hessian, then we have quadratic

convergence

• Example:

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 23

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Second-Order Optimization

• Convergence
• Strongly convex 𝑓𝑓(𝑋𝑋) with Lipschitz Hessian, then we have quadratic

convergence

• Example:

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 24

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Second-Order Optimization

• Convergence
• Strongly convex 𝑓𝑓(𝑋𝑋) with Lipschitz Hessian, then we have quadratic

convergence

• Example:

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 25

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Second-Order Optimization

• Issues with Hessian
• Extremely expensive to compute for neural networks (quadratic number of

parameters to compute)
• Even harder to invert it
• It can diverge for non-convex functions due to negative eigenvalues

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 26

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Second-Order Optimization

• Issues with Hessian
• Extremely expensive to compute for neural networks (quadratic number of

parameters to compute)
• Even harder to invert it
• It can diverge for non-convex functions due to negative eigenvalues

• But second-order method normalizes the axis!
• Many of the convergence issues arise because we force the same learning

rate on all parameters

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 27

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Accelerated Methods

• Can we do better with first-order methods?
• The issue of dimension-independent learning rate
• Some dimension will be converging but some other dimensions will oscillate

(and even diverge)

• Goal: encouraging converging dimensions while reduce step size on the
oscillating dimensions

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 28

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Accelerated Methods

• The heavy-ball method
• Maintain an running average of past gradients (typically 𝛽𝛽 = 0.9)

𝛥𝛥𝑋𝑋𝑘𝑘 = 𝛽𝛽𝛥𝛥𝑋𝑋𝑘𝑘−1 − 𝜂𝜂𝜂𝜂𝑓𝑓(𝑋𝑋𝑘𝑘)
• Update with the averaged gradients instead of the current one

𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 + Δ𝑋𝑋𝑘𝑘

• Intuition:
• Larger steps when gradients keeps the same direction
• Smaller steps when gradients flip directions

• Gradient Descent with Momentum
𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 𝜂𝜂∇𝑓𝑓 𝑋𝑋𝑘𝑘 + 𝛽𝛽 𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘−1

momentum

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 29

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Accelerated Methods

• The momentum method
 𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 𝜂𝜂∇𝑓𝑓 𝑋𝑋𝑘𝑘 + 𝛽𝛽 𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘−1

• For each iteration

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 30

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Accelerated Methods

• The momentum method
 𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 𝜂𝜂∇𝑓𝑓 𝑋𝑋𝑘𝑘 + 𝛽𝛽 𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘−1

• For each iteration
• Compute the current gradient

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 31

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Accelerated Methods

• The momentum method
 𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 𝜂𝜂∇𝑓𝑓 𝑋𝑋𝑘𝑘 + 𝛽𝛽 𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘−1

• For each iteration
• Compute the current gradient
• Add 𝛽𝛽-scaled previous step

• Actually the running average from the previous iteration

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 32

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Accelerated Methods

• The momentum method
 𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 𝜂𝜂∇𝑓𝑓 𝑋𝑋𝑘𝑘 + 𝛽𝛽 𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘−1

• For each iteration
• Compute the current gradient
• Add 𝛽𝛽-scaled previous step
• Get the final direction

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 33

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Accelerated Methods

• The momentum method
 𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 𝜂𝜂∇𝑓𝑓 𝑋𝑋𝑘𝑘 + 𝛽𝛽 𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘−1

• For each iteration
• Compute the current gradient
• Add 𝛽𝛽-scaled previous step
• Get the final direction

• Convergence Rate? Unfortunately no… disprove it in your homework

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 34

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Accelerated Methods

• Nesterov’s accelerated gradient descent
 𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 𝜂𝜂∇𝑓𝑓 𝑋𝑋𝑘𝑘 + 𝛽𝛽 𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘−1 + 𝛽𝛽 𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘−1

• For each iteration
• Compute the current gradient evaluated at the resultant location
• Add 𝛽𝛽-scaled previous step
• Get the final direction

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 35

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Accelerated Methods

• Nesterov’s accelerated gradient descent
 𝑋𝑋𝑘𝑘+1 = 𝑋𝑋𝑘𝑘 − 𝜂𝜂∇𝑓𝑓 𝑋𝑋𝑘𝑘 + 𝛽𝛽 𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘−1 + 𝛽𝛽 𝑋𝑋𝑘𝑘 − 𝑋𝑋𝑘𝑘−1

• For each iteration
• Compute the current gradient evaluated at the resultant location
• Add 𝛽𝛽-scaled previous step
• Get the final direction

𝜅𝜅 =
𝐿𝐿
𝜇𝜇 𝐿𝐿 ≫ 𝜇𝜇, (some direction has large gradient changes) the improvement becomes significant

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 36

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Convex Optimization: Summary

• Take-Aways
• Adaptive learning rates help convergence
• Gradient descent maybe too slow or unstable due to inconsistency between

dimensions
• Second-order methods normalize dimensions but too expensive
• Momentum methods emphasizes the directions of steady improvement and

can significantly improve naïve GD

• Let’s switch to neural networks!

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 37

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimization for Neural Networks

• Learning a neural classifier
• Loss function 𝐿𝐿 𝜃𝜃 = 1

𝑁𝑁
∑𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃 ;𝑦𝑦𝑖𝑖

• Goal: minimize 𝐿𝐿(𝜃𝜃) w.r.t. 𝜃𝜃
• Gradient descent

• Backpropagation for each training sample 𝐿𝐿𝑖𝑖 𝜃𝜃 = ∇𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃 ;𝑦𝑦𝑖𝑖

• Average gradients over 𝑁𝑁 samples ∇𝐿𝐿 𝜃𝜃 = 1
𝑁𝑁
∑𝑖𝑖 ∇𝜃𝜃𝐿𝐿𝑖𝑖(𝜃𝜃)

• 𝜃𝜃𝑘𝑘+1 ← 𝜃𝜃𝑘𝑘 − 𝜂𝜂𝑘𝑘∇𝐿𝐿 𝜃𝜃𝑘𝑘

• What if 𝑁𝑁 is large?

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 38

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimization for Neural Networks

• Stochastic Gradient Descent
• Given training data 𝒳𝒳 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
• Random sample a data point 𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 ∈ 𝒳𝒳
• Incremental update: 𝜃𝜃𝑘𝑘+1 ← 𝜃𝜃𝑘𝑘 − 𝜂𝜂𝑘𝑘∇𝐿𝐿𝑗𝑗(𝜃𝜃𝑘𝑘)

• Remark
• An unbiased gradient estimate: ∇𝐿𝐿 𝜃𝜃 = E𝑗𝑗[𝜂𝜂𝐿𝐿𝑗𝑗(𝜃𝜃)]
• Extremely efficient computation but may suffer from the variance
• We can also apply a cyclic rule: 𝑗𝑗 = 1,2, … ,𝑁𝑁

• (refer to your machine learning course materials!)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 39

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimization for Neural Networks

• Convergence Condition
• A diminishing learning rate: ∑𝑘𝑘 𝜂𝜂𝑘𝑘 = ∞ and ∑𝑘𝑘 𝜂𝜂𝑘𝑘

2 < ∞
• Typical usage: 𝜂𝜂𝑘𝑘 ∝ 1

𝑘𝑘
• Why wouldn’t a constant learning rate work?

• Convergence Rate (ML Course Recap.)
• Convex function: E 𝑓𝑓 𝑋𝑋𝑘𝑘 − 𝑓𝑓∗ = 𝑂𝑂 1

𝑘𝑘
 (no improvement w. 𝐿𝐿-smooth)

• Strongly convex function:E 𝑓𝑓 𝑋𝑋𝑘𝑘 − 𝑓𝑓∗ = 𝑂𝑂 1
𝑘𝑘

• Recap of GD: 𝑂𝑂(1/𝑘𝑘) for convex and 𝐿𝐿-smooth and linear for strongly convex
• SGD is slightly worse (we will try to improve it later)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 40

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimization for Neural Networks

• Mini-batches!
• We choose a random subset of indices 𝐿𝐿𝑗𝑗 ⊂ {1, … ,𝑁𝑁} and 𝐿𝐿𝑗𝑗 = 𝑏𝑏 (batch-size)
• 𝒳𝒳 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 : 𝑖𝑖 ∈ 𝐿𝐿𝑗𝑗 : a mini-batch of training data
• 𝐿𝐿𝐼𝐼𝑗𝑗 𝜃𝜃 = 1

𝑏𝑏
∑𝑖𝑖∈𝐼𝐼𝑗𝑗 𝐿𝐿𝑖𝑖(𝜃𝜃) estimate the gradient over a mini-batch

• 𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 − 𝜂𝜂𝑘𝑘𝜂𝜂𝐿𝐿𝐼𝐼𝑗𝑗(𝜃𝜃
𝑘𝑘)

• Mini-batch gradient is still an unbiased estimate of the gradient
• Reduce the variance by 1

𝑏𝑏
• Practical Use:

• Randomly split 𝒳𝒳 into 𝑁𝑁
𝑏𝑏

 mini-batches (an epoch)
• Run mini-batch gradient descent over these pre-split mini-batches

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 41

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimization for Neural Networks

• Example
• Logistic regression (strongly convex)
• 𝑑𝑑 = 20 dimensions, 𝑛𝑛 = 104 data points, fixed learning rate

In practice, start with a
large batch size when
computation permitted

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 42

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimization for Neural Networks

• Why do we use mini-batch for neural networks
• Computation variance trade-off: GD too expensive; SGD too noisy
• Noise can sometimes help escape local minimum / saddle point

(with assumptions, refer to your ML course!)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 43

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimization for Neural Networks

• Why do we use mini-batch for neural networks
• Computation variance trade-off: GD too expensive; SGD too noisy
• Noise can sometimes help escape local minimum / saddle point

(with assumptions)

• Popular hypothesis in deep learning
• Saddle points are far more common than local minima

(exponential in network size)
• Saddle points: Gradient is 0 and Hessian with both pos/neg eigenvalues

• Most local minima are equivalent and close to global optimum
• NOT TRUE for small networks or in other domains like deep RL

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 44

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimization for Neural Networks

• Why do we use mini-batch for neural networks
• Computation variance trade-off: GD too expensive; SGD too noisy
• Noise can sometimes help escape local minimum / saddle point

(with assumptions)

• Popular hypothesis in deep learning
• Saddle points are far more common than local minima

(exponential in network size)
• Saddle points: Gradient is 0 and Hessian with both pos/neg eigenvalues

• Most local minima are equivalent and close to global optimum
• NOT TRUE for small networks or in other domains like deep RL

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 45

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimization for Neural Networks

• Can we improve Mini-Batch GD?

• Recap: Inspirations from Convex Optimization
• Adaptive learning rate
• Decouple learning rate for dimensions
• Second-order approximation can help (scaling axis)
• Momentum helps

• SGD Variants for deep learning
• AdaGrad; RMSProp; Adam; …

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 46

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimization for Neural Networks

• A closer look at gradient descent
• Standard accelerated methods still have oscillations
• Observation: Steps in “oscillatory” directions show large total movement
• Idea: slow down learning rate in directions with high motion

• Still high-order methods

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 47

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimization for Neural Networks

• A closer look at gradient descent
• Standard accelerated methods still have oscillations
• Observation: Steps in “oscillatory” directions show large total movement
• Idea: slow down learning rate in directions with high motion

• Still high-order methods

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 48

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

AdaGrad

• AdaGrad Algorithm (Duchi et al, 2011)
• 𝑔𝑔𝑘𝑘 = ∇𝜃𝜃𝑓𝑓 𝜃𝜃𝑘𝑘

• 𝐺𝐺𝑖𝑖𝑘𝑘 = 𝐺𝐺𝑖𝑖𝑘𝑘−1 + 𝑔𝑔𝑖𝑖𝑘𝑘
2

 (accumulated gradient square for each weight)
• 𝜃𝜃𝑖𝑖𝑘𝑘+1 = 𝜃𝜃𝑖𝑖𝑘𝑘 −

𝜂𝜂

𝐺𝐺𝑖𝑖
𝑘𝑘+𝜖𝜖

𝑔𝑔𝑖𝑖𝑘𝑘 (annealing learning rate for each weight)

• Remark
• No need to tune learning rate (in practice fix 𝜂𝜂 = 0.01, 𝜖𝜖 = 10−8)
• Decoupled learning rate for each dimension

• GLoVe use AdaGrad for word embeddings, so rare words have higher learning rate
• Weakness: learning rate decays too quickly

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 49

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

RMSProp

• RMSProp Algorithm (by Hinton, in his lecture notes, ~ 2012)
• 𝑔𝑔𝑘𝑘 = ∇𝜃𝜃𝑓𝑓 𝜃𝜃𝑘𝑘

• 𝐺𝐺𝑖𝑖𝑘𝑘 = 𝛾𝛾𝐺𝐺𝑖𝑖𝑘𝑘−1 + (1 − 𝛾𝛾) 𝑔𝑔𝑖𝑖𝑘𝑘
2

 (moving average of square gradient)
• 𝜃𝜃𝑖𝑖𝑘𝑘+1 = 𝜃𝜃𝑖𝑖𝑘𝑘 −

𝜂𝜂

𝐺𝐺𝑖𝑖
𝑘𝑘+𝜖𝜖

𝑔𝑔𝑖𝑖𝑘𝑘

• Remark
• Address the vanishing learning rate for AdaGrad
• Works particularly well for RNNs

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 50

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Adam

• Adam algorithm (Diederik P. Kingma & Jimmy Ba, 2014, arxiv)
• RMSProp with Momentum, the most popular optimizer, >200k citations
• 𝑔𝑔𝑘𝑘 = ∇𝜃𝜃𝑓𝑓 𝜃𝜃𝑘𝑘

• 𝑀𝑀𝑖𝑖
𝑘𝑘 = 𝛿𝛿𝑀𝑀𝑖𝑖

𝑘𝑘−1 + 1 − 𝛿𝛿 𝑔𝑔𝑖𝑖𝑘𝑘 (momentum)

• 𝐺𝐺𝑖𝑖𝑘𝑘 = 𝛾𝛾𝐺𝐺𝑖𝑖𝑘𝑘−1 + (1 − 𝛾𝛾) 𝑔𝑔𝑖𝑖𝑘𝑘
2

 (RMS of square gradient)

• �𝑀𝑀𝑘𝑘 = 𝑀𝑀𝑘𝑘

1−𝛿𝛿𝑘𝑘
, �𝐺𝐺𝑘𝑘 = 𝐺𝐺𝑘𝑘

1−𝛾𝛾𝑘𝑘
 (ensure 𝛾𝛾 and 𝛿𝛿 terms do not dominate in early

iters)
• 𝜃𝜃𝑖𝑖𝑘𝑘+1 = 𝜃𝜃𝑖𝑖𝑘𝑘 −

𝜂𝜂

�𝐺𝐺𝑖𝑖
𝑘𝑘+𝜖𝜖

�𝑀𝑀𝑖𝑖
𝑘𝑘

• Remark
• Particularly effective for RNN, generative models, RL

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 51

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimizers for Deep Learning

• A visualization by (Alec Radford, recently retired from OpenAI)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 52

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimizers for Deep Learning

• A visualization by (Alec Radford, recently retired from OpenAI)

Noisy Moon

Beale’s Function

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 53

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Optimizers for Deep Learning

• A visualization by (Alec Radford, recently retired from OpenAI)

Long Valley Saddle Point

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 54

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Today’s Lecture

• Get your hand more dirty!

• Part 1: design a better learning algorithm
• More tricks to play with gradients

• Part 2: more tricks for practical classification
• Start to get professional in tuning!

• Part 3: advanced architectures
• Part 4: cloud computing tutorial

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 55

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks Approaching!

• So Far
• Common optimizers to minimize the loss
• SGD, Momentum, AdaGrad, RMSProp, Adam

• Overfitting!
• Neural networks are universal functions
• Overfitted responses facilitated by large weights

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 56

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks Approaching!

• So Far
• Common optimizers to minimize the loss
• SGD, Momentum, AdaGrad, RMSProp, Adam

• Overfitting!
• Neural networks are universal functions
• Overfitted responses facilitated by large weights Weight Decay (L2-norm)

More?

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 57

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Tricks in AlexNet

• AlexNet (Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, 2012)
• First deep learning breakthrough in image classification

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 58

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Tricks in AlexNet

• AlexNet (Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, 2012)
• First deep learning breakthrough in image classification
• ReLU activation and overlapping pooling

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 59

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Tricks in AlexNet

• Data Preparation and Augmentation
• Subtract the mean activity over the training set from each pixel
• Crop 224x224 patches (and their horizontal reflections.)
• At test time, average the predictions on the 10 patches (ensemble)
• Change the intensity of RGB channels, add PCA components

𝐿𝐿𝑅𝑅 , 𝐿𝐿𝐺𝐺 , 𝐿𝐿𝐵𝐵 += 𝛼𝛼 𝑃𝑃𝑅𝑅,𝑃𝑃𝐺𝐺 ,𝑃𝑃𝐵𝐵 𝜆𝜆𝑅𝑅, 𝜆𝜆𝐺𝐺 , 𝜆𝜆𝐵𝐵 𝑇𝑇 ,𝛼𝛼 ∼ 𝑁𝑁(0,0.1)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 60

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Tricks in AlexNet

• Data Preparation and Augmentation
• Subtract the mean activity over the training set from each pixel
• Crop 224x224 patches (and their horizontal reflections.)
• At test time, average the predictions on the 10 patches (ensemble)
• Change the intensity of RGB channels, add PCA components

𝐿𝐿𝑅𝑅 , 𝐿𝐿𝐺𝐺 , 𝐿𝐿𝐵𝐵 += 𝛼𝛼 𝑃𝑃𝑅𝑅,𝑃𝑃𝐺𝐺 ,𝑃𝑃𝐵𝐵 𝜆𝜆𝑅𝑅, 𝜆𝜆𝐺𝐺 , 𝜆𝜆𝐵𝐵 𝑇𝑇 ,𝛼𝛼 ∼ 𝑁𝑁(0,0.1)

• More data augmentation tricks
• Rotation, stretching, flipping, etc

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 61

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Tricks in AlexNet

• Dropout
• Training: for each input, at each iteration, randomly “turn off” each neuron

with a probability 1 − 𝛼𝛼

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 62

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Tricks in AlexNet

• Dropout
• Training: for each input, at each iteration, randomly “turn off” each neuron

with a probability 1 − 𝛼𝛼
• Intuition: randomly cut off some connections and neurons

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 63

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Tricks in AlexNet

• Dropout
• Training: for each input, at each iteration, randomly “turn off” each neuron

with a probability 1 − 𝛼𝛼
• In practice, we change a neuron to 0 by sampling a Bernoulli variable with prob. 1 − 𝛼𝛼

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 64

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Tricks in AlexNet

• Dropout
• Training: for each input, at each iteration, randomly “turn off” each neuron

with a probability 1 − 𝛼𝛼
• In practice, we change a neuron to 0 by sampling a Bernoulli variable with prob. 1 − 𝛼𝛼
• Random “turn-off” prevent overfitting to particular neurons or weights

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 65

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Tricks in AlexNet

• Dropout
• Training: for each input, at each iteration, randomly “turn off” each neuron

with a probability 1 − 𝛼𝛼
• In practice, we change a neuron to 0 by sampling a Bernoulli variable with prob. 1 − 𝛼𝛼
• Random “turn-off” prevent overfitting to particular neurons or weights
• Gradient only propagated from non-zero neurons

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 66

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Tricks in AlexNet

• Understanding Dropout
• Dropout forces the neural network to learn redundant patterns
• Dropout can be viewed as an implicit L2 regularizer

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 67

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Tricks in AlexNet

• Dropout changes the scale of the output neuron
• 𝑦𝑦 = 𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝜎𝜎(∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏))
• 𝐸𝐸 𝑦𝑦 = 𝛼𝛼𝐸𝐸 𝜎𝜎 ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏

• Dropout at Inference Time
• 𝑦𝑦 = 𝛼𝛼𝜎𝜎 ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏 expected output of the neuron

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 68

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks

• Early Stopping
• Continue training may lead to training data overfitting
• Track performance on a held-out validation set

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 69

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks

• Initialization
• Zero initialization makes all neurons learn the same pattern

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 70

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks

• Initialization
• Zero initialization makes all neurons learn the same pattern random init

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 71

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks

• Initialization
• Zero initialization makes all neurons learn the same pattern random init
• A too-large initialization leads to exploding gradients

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 72

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks

• Initialization
• Zero initialization makes all neurons learn the same pattern random init
• A too-large initialization leads to exploding gradients small init

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 73

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks

• Initialization
• Zero initialization makes all neurons learn the same pattern random init
• A too-large initialization leads to exploding gradients small init

• Design Principle
• Zero activation mean
• Activation variance remains same across layers

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 74

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks

• Initialization
• Zero initialization makes all neurons learn the same pattern random init
• A too-large initialization leads to exploding gradients small init

• Design Principle
• Zero activation mean value at 0 (softsign, tanh) or large gradient (sigmoid)
• Activation variance remains same across layers
 prevent gradient vanishing/exploision

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 75

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks

• Xavier Initialization (Xavier Glorot & Yoshua Bengio, AISTATS10)
• 𝑏𝑏(𝑘𝑘) ← 0

• 𝑊𝑊(𝑘𝑘)~𝐷𝐷𝑛𝑛𝑖𝑖𝑓𝑓 ± 6
𝑛𝑛𝑘𝑘+𝑛𝑛𝑘𝑘+1

• 𝑛𝑛𝑘𝑘 hidden size of layer 𝑘𝑘 (fan-in); 𝑛𝑛𝑘𝑘+1 (fan-out)

• Experiments from the paper (tanh activation)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 76

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks

• Kaiming Initialization (Kaiming He et al., 2015)
• 𝑏𝑏(𝑘𝑘) ← 0

• 𝑊𝑊(𝑘𝑘)~𝐷𝐷𝑛𝑛𝑖𝑖𝑓𝑓 ± 2
𝑛𝑛𝑘𝑘

• Only fan-in

• Remark
• Designed for ReLU activation
• Results for a 30-layer network

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 77

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks

• Initialization by pretraining
• Use a pretrained network as initialization
• And then fine-tuning (a few layers or the whole network)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 78

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks

• Gradient Clipping
• The loss can occasionally lead to a steep decent
• This can result in immediate instability

• If ∇𝜃𝜃𝑖𝑖> 5, then set ∇𝜃𝜃𝑖𝑖 to 5. (you can also scale the norm of |∇𝜃𝜃|)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 79

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks: Covariance Shift

• The problem of covariance shift
• Assumption: mini-batches share a similar data distribution
• Reality: each minibatch may have a different distribution

• Covariance shift
• It can also cause covariance shift for different layers

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 80

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Tricks: Covariance Shift

• The problem of covariance shift
• Assumption: mini-batches share a similar data distribution
• Reality: each minibatch may have a different distribution
• Solution: make each batch same mean and standard deviation for training

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 81

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Batch Normalization

• BatchNorm Layer (Sergey Ioffe & Christian Szegedy, 2015, 60k cites)
• 𝐷𝐷𝑖𝑖 : scaled activations with zero-mean and unit std dev
• �̂�𝑧𝑖𝑖 = 𝛾𝛾𝐷𝐷𝑖𝑖 + 𝛽𝛽 : Then shift to a proper location, 𝛾𝛾,𝛽𝛽 are parameters

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 82

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Batch Normalization

• BatchNorm at Training Time
• Standard Backprop performed for each single training data

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 83

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Batch Normalization

• BatchNorm at Training Time
• Standard Backprop performed for each single training data
• Now backprop is performed over the entire batch (derivation skipped)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 84

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Batch Normalization

• BatchNorm at Training Time
• Standard Backprop performed for each single training data
• Now backprop is performed over the entire batch (derivation skipped)

• BatchNorm at Inference Time
• We need to estimate 𝜇𝜇𝐵𝐵 and 𝜎𝜎𝐵𝐵2
• (Running) Average of training mini-batches!

• 𝜇𝜇𝐵𝐵 = 1
𝑁𝑁_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

∑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝜇𝜇𝐵𝐵 𝑏𝑏𝑎𝑎𝐷𝐷𝑐𝑐𝑏

• 𝜎𝜎𝐵𝐵2 = 1
𝑁𝑁_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

⋅ 𝐵𝐵
𝐵𝐵−1

∑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝜎𝜎𝐵𝐵2(𝑏𝑏𝑎𝑎𝐷𝐷𝑐𝑐𝑏)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 85

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Batch Normalization

• BatchNorm at Training Time
• Standard Backprop performed for each single training data
• Now backprop is performed over the entire batch (derivation skipped)

• BatchNorm at Inference Time
• We need to estimate 𝜇𝜇𝐵𝐵 and 𝜎𝜎𝐵𝐵2
• (Running) Average of training mini-batches!

• 𝜇𝜇𝐵𝐵 = 1
𝑁𝑁_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

∑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝜇𝜇𝐵𝐵 𝑏𝑏𝑎𝑎𝐷𝐷𝑐𝑐𝑏

• 𝜎𝜎𝐵𝐵2 = 1
𝑁𝑁_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

⋅ 𝐵𝐵
𝐵𝐵−1

∑𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝜎𝜎𝐵𝐵2(𝑏𝑏𝑎𝑎𝐷𝐷𝑐𝑐𝑏) unbiased variance estimator

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 86

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Batch Normalization

• Remarks
• Evidently, no dropout necessary (or tiny dropout rate) with batch norm
• Batch norm applies to specific layers (most popular in convolution layer)
• Larger learning rate and faster decay (data always in high gradient region)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 87

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Layer Normalization

• LayerNorm layer (Jimmy Ba, Jamie Kiros, Hinton, 2016)
• Scales the mean and std-dev of a hidden layer

• Remark:
• Batch-independent
• Particularly suitable for RNN
• It also works extremely well for MLPs

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 88

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

More Regularizations

• WeightNorm
• Suitable for meta-learning setting when high order of gradients are computed

• InstanceNorm
• Batch-independent, suitable for generation tasks

• GroupNorm (by Yuxin Wu & Kaiming He)
• Batch-independent, improve BatchNorm for small batch size

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 89

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Today’s Lecture

• Get your hand more dirty!

• Part 1: design a better learning algorithm
• More tricks to play with gradients

• Part 2: more tricks for practical classification
• Start to get professional in tuning!

• Part 3: advanced architectures
• Part 4: cloud computing tutorial

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 90

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Residual Network

• ResNet (Kaiming He, et al., 2015)
• ImageNet 2015 Champion
• First “deep” network with >100 layers!

Residual Block

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 91

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Residual Network

• Residual Connection
𝑧𝑧 = 𝜎𝜎(𝑓𝑓 𝑥𝑥 + 𝑥𝑥)

• Justification from the paper
• A trivial solution with good precondition for arbitrarily deep network

𝑊𝑊(𝑘𝑘) = 𝐿𝐿
• Hypothesis: hard to learn identity but easy to learn zero
• Solution: fit the residual function 𝐻𝐻 𝑥𝑥 = 𝑓𝑓 𝑥𝑥 − 𝑥𝑥

• True story
• One day a bug happened and you see extremely good valid error…

• Fun story about 何恺明
• 2003清华基科班，first paper out at PhD 3rd year, CVPR 09 best paper
• BP at CVPR 2016, ICCV 2017, BP honorable mention ECCV2018 Do solid research!

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 92

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Densely Connected Network

• Shallow networks to achieve the same performance of ResNet?
• DenseNet (by 黄高 & 刘壮, et al, 2016, CVPR17 best paper)

• Take outputs of all previous layers
• Directly get information flow from all layers

• Issue:
• Network maybe too wide
• Need to be careful about memory consumption

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 93

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Deconvolution

• Image Classification
• From high-dimensional to a low-dimensional output
• Convolution / pooling to keep down-sampling the image

• The reverse order?
• label image?
• image image?

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 94

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Fully Convolutional Network (Revisited)

• FCN for Semantic Segmentation (Long et al, 2014)
• First example of fully convolutional network
• Image to segmentation mask
• Use deconvolution layer to up sampling an image/map
• More to use in generative models!

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 95

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Summary

• The tricks today!
• Optimizers

• SGD, Momentum, RMSProp, Adam, etc
• Regularization techniques

• Initialization, clipping, early stopping, data processing, etc
• Regularization layers (Dropout, BatchNorm, LayerNorm)

• Architecture
• Residual Connection
• FCN
• And more to come (later in this course and in computer vision)

• You are now ready for becoming a tuning professional!
• General hints:

• First overfit, then regularize; L-rate decay; Learn from well-tuned architectures

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 96

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

Today’s Lecture

• Get your hand more dirty!

• Part 1: design a better learning algorithm
• More tricks to play with gradients

• Part 2: more tricks for practical classification
• Start to get professional in tuning!

• Part 3: advanced architectures
• Part 4: cloud computing tutorial

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ IIIS

2/28 Copyright @ IIIS, Tsinghua University 97

De
ep
 L
ea
rn
in
g,
 S
pr
in
g
20
25

II
IS
,
Ts
in
gh
ua
 U
ni
ve
rs
it
y

