Deep Learning
lecture 3
Supervised Learning (2)

Yi Wu, IS
Spring 2025
Mar-3

Lecture 3, Deep Learning, 2025 Spring

Overview of Lecture 2

e Learning a multi-layer perceptron

* Backpropagation for efficient gradient descent
* Forward pass
e Backward pass
* Differentiable layers
* Learning rate

e Basic components
* Linear layer
» Softmax layer and cross-entropy. loss
* Activation

* Gradientvanishing-issue and activation function design
* Subgradients

2/28 Copyright @ 111S, Tsinghua University

OpenPsi @ I111S

Lecture 3, Deep Learning, 2025 Spring

Overview of Lecture 2

 Convolutional Neural Network

* Scanning for shift invariance

* The convolution filter
* Recursive scanning
* Fewer parameters and larger receptive field

* Pooling for jittering
* Padding for retaining output size

e 1D convolution
* Time delay neural network’or temporal CNN

2/28 Copyright @ 111S, Tsinghua University

OpenPsi @ I111S

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Today’s Lecture

* Get your hands more dirty!

* Part 1: design a better learning algorithm
* More tricks to play with gradients

* Part 2: more tricks for practical classification
 Start to get professionalin.tuning!

* Part 3: advanced architectures
* Part 4: cloud computing tutorial

2/28 Copyright @ 111S, Tsinghua University 5

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Today’s Lecture

* Get your hands more dirty!

* Part 1: design a better learning algorithm
* More tricks to play with gradients

* Part 2: more tricks for practical classification
 Start to get professionalin.tuning!

* Part 3: advanced architectures
* Part 4: cloud computing tutorial

2/28 Copyright @ 111S, Tsinghua University 6

Lecture 3, Deep Learning, 2025 Spring

OpenPsi @ I111S

Recap: Training a Neural Network

* Problem Statement
* Given training data X = {(xi,yi)}
* Design a neural network y = f(x;)
.]_ . .
* Loss function L(0) = Nzi err(f(x‘; 6’); y‘)
* Goal: minimize L(0) w.r.t. 6

* Non-Convex Optimization!

2/28 Copyright @ 111S, Tsinghua University

Ipput Hidden Layers

) Output

Input: vector of QOutput: Class prob
pixel values

Lecture 3, Deep Learning, 2025 Spring

OpenPsi @ I111S

Recap: Training a Neural Network

* The Gradient Descent Algorithm for f(X)
e Choose XY
o Xk+1 — Xk _ nkvxf(Xk)
» Convergence: |f(X**1) — f(X*)| <€

* Learning rate n” is criticall

converging

2/28 ; Copyright @ IN11S, Tsinghua University 8

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Convex Optimization

* How to set the learning rate n?

e Get inspired from the convex setting e S
15 - '?;‘. i L (A
* Global optimum<->Vf(x) =0 R

()
SCAKEAX KNS

¢-_.*- 5l

* Convex Function f(x)

¢ flx+y) <5 (F) + @)

° sz(X) = 0 Big learning rate Small learning rate

* Intuition: smalllearning rate

* What’s the threshold?
2/28 Copyright @ I11S, Tsinghua University 9

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Convex Optimization

* Definition: Lipschitz continuous
* A function g(x) is Lipschitz continuous: {g(x) — g(¥)| < L|x — y|

* Assumption: a “smooth” convex-function f(x)
* f(x) is convex
 Gradient of f(x) is Lipschitz continuous: |Vf(x) — Vf(y)| < L|x — y|
* “Gradient can't changearbitrarily fast”
« V2f(x) < LI
* A reasonably weak-assumption
* Machine learning, neural networks, etc

2/28 Copyright @ 111S, Tsinghua University 10

Lecture 3, Deep Learning, 2025 Spring

OpenPsi @ 111S
Convex Optimization
Rectified Linear Unit .
(ReLU) Leaky ReLU Exponential LU 1O
1 1 7 V1 1
Modern ~ = — A
Non-Linear g 0 0. .
Activation - A%
Functions |
-1 -1 -1
-1 0 1 -1 0 1 -1 0 1
X, X209
y=max (0, x) y=max{ox,X) y={u(g_1)’x{ﬂ

a = small const. (e.g. 0.1)

* A reasonably weak-assumption

* Machine learning, neural networks, etc
e Remark: ReltU v.sy, ELU

2/28 Copyright @ 111S, Tsinghua University 11

Lecture 3, Deep Learning, 2025 Spring

Convex Optimization

* Descent Lemma
CfO) S f@)+ VDT —x) +5 =y

* Prove it in your homework ©

* A convex quadratic upper bound-on.f (x)
* Minimize the upper bound of y

°n = % (optimal)

* Remark:any 0 <n'< %, decreases f(x)

2/28 Copyright @ 111S, Tsinghua University

OpenPsi @ I111S

W f(x) + VE(x)T(y-x) + (L/2)Ily-xlI2

f(x) + VIGOT(y-2)|

12

3, Deep Learning, 2025 Spring

Convex Optimization

» Convergence Rate with constant learning rate n'= %
e ykt+1l — yk —%VXf(Xk)
 f(X*Y) < f(xF) - ﬁ |V]”(X}")|2 (decent lemma)
Vi(xk) ‘<L (f(Xk) — f(Xk+1)) (progress bound)
+ ke min {[VF(x))|*} < 28(F (X = f (X))
e For X* with ‘Vf(Xk)‘z <€

1 :
k=0 (Z)’ a sublinear convergence rate

* Also hold for non-convex function
“* e« Saddle point or local optimuri'{Refer'ts Yéur ML course slides!)

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Convex Optimization

e How to estimate L ?

* Adaptive Learning Rate with Line Search
 Start with a large learning rate n
* Decrease if some condition unsatisfied
* Naive solution: ensure function value is decrease
* Armijo condition: f (W - an(Wk)) <f(wk)—n-)/|Vf(Wk)|2 fory € (0,1/2]
(backtracking line-search)
* And more (e.g., Wolfe conditions, etc, take a convex optimization course!)

* Practical Solution

* If performance is not decreasing on the validation set, decrease learning rate
2/28 by 77 (_ a . T] Copyright @ I11S, Tsinghua University 14

Lecture 3, Deep Learning, 2025 Spring

Strongly Convex Functions

e Better results for convex functions?
 Strongly convexity (for some u > 0)

FO) 2 fO) + V@) (v = 1) 45 |y 2

* A quadratic lower bound!

* Better rate for L-smooth-strongly convex function

« LI = V%f(x) >0

Proveitin your homework ©

2/28

Copyright @ 111S, Tsinghua University

OpenPsi @ I111S

15

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Strongly Convex Functions

* Linear convergence on strongly convex L=smooth function
* For f(X*) — f* <€, wehavek =0 (logé)

e Strong convexity is good!
* A quadratic lower-bound

* Bounded sub-optimality: progress is-at least a fraction of max sub-optimality

* (very unofficial) Justification-for weight decay (I12-norm)
e f(x) » f(x) +.a|x|* convex = strongly convex
 Remark: adding regularizations often gives you better analytical properties

2/28 Copyright @ 111S, Tsinghua University 16

Lecture 3, Deep Learning, 2025 Spring

Second-Order Optimization

e Can we do better for strongly convex functions?
+ Recap: XK*1 = Xk —~v, f(x¥)
* We use a fixed learning rate for all the coordinates
* |s this optimal?

* Imagine a 2-dimensional quadratic function
« y, = axi + bx3
* Different optimal learning

rate for each axis

* ¥, = ax? + bxz+'cx,x,
¢y = XTAX +DbX +c

2/28 .y*:lXTX_I'bX‘l'C
2

Lecture 3, Deep Learning, 2025 Spring

OpenPsi @ I111S

Second-Order Optimization

* Scaling the axis (quadratic function case)
* f(X) = XTAX + bX + c with A > 0
« X = A%X

» Gradient descent on f(X)
. XK+ = Rk _ pVF(RK)

* Modified update rule
e Yk+1 — yk _ nA‘1Vf(Xk)
* Newton’s method

i |
E :EwTAw+bTw+c

2/28 Copyright @ I11S, Tsinghua University 18

Lecture 3, Deep Learning, 2025 Spring

OpenPsi @ I111S

Second-Order Optimization

* General L-smooth strongly convex functions?
* Generalized Newton’s method
* Taylor’s expansion (progress bound)

fO) <)+)"y =)+ o) V() (Y — x)
* Newton’s method to optimize this upper-bound
* L-smoothness gives you animprovement guarantee!

* Second-order optimization 5
o Xk+1 — Xk _ nkaf(xk)_lvf(Xk) n

2/28 Copyright @ 111S, TsH

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Second-Order Optimization

* Convergence (homework ©)

* Strongly convex f (X) with Lipschitz Hessian, then‘we have quadratic
convergence

* Example:

2/28 20

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Second-Order Optimization

* Convergence

* Strongly convex f (X) with Lipschitz Hessian, then‘we have quadratic
convergence

* Example:

2/28 21

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Second-Order Optimization

* Convergence

* Strongly convex f (X) with Lipschitz Hessian, then‘we have quadratic
convergence

* Example:

2/28 22

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Second-Order Optimization

* Convergence

* Strongly convex f (X) with Lipschitz Hessian, then‘we have quadratic
convergence

* Example:

2/28 23

Lecture 3, Deep Learning, 2025 Spring

Second-Order Optimization

* Convergence

* Strongly convex f (X) with Lipschitz Hessian, then‘we have quadratic

convergence

* Example:

2/28

20 prrzm——

154

10

OpenPsi @ I111S

24

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Second-Order Optimization

* Convergence

* Strongly convex f (X) with Lipschitz Hessian, then‘we have quadratic
convergence

* Example:

2/28 25

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Second-Order Optimization

e |ssues with Hessian

e Extremely expensive to compute for neural networks (quadratic number of
parameters to compute)

* Even harder to invert it
* |t can diverge for non-convex-functions'due to negative eigenvalues

2/28 Copyright @ I11S, Tsinghua University 26

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Second-Order Optimization

e |ssues with Hessian

e Extremely expensive to compute for neural networks (quadratic number of
parameters to compute)

* Even harder to invert it
* |t can diverge for non-convex-functions'due to negative eigenvalues

e But second-order method-normalizes the axis!

* Many of the convergence issdes arise because we force the same learning
rate on all parameters

2/28 Copyright @ 111S, Tsinghua University 27

Lecture 3, Deep Learning, 2025 Spring

Accelerated Methods

OpenPsi @ I111S

* Can we do better with first-order methods?
* The issue of dimension-independent learning rate

* Some dimension will be converging but-some.other dimensions will oscillate
(and even diverge)

20

.
<< AN
- l‘\K U /" -Z |

=

! .
LY 1] 3)
n o in o @ o 73

=20

: 220 ;
20 -10 0 10 20 -210) 20 - 0 10 20

* Goal: encouraging converging dimensions while reduce step size on the
oscillating dimensions

2/28 Copyright @ 111S, Tsinghua University 28

Lecture 3, Deep Learning, 2025 Spring

Accelerated Methods

OpenPsi @ I111S

* The heavy-ball method
* Maintain an running average of past gradients (typically § = 0.9)
AX® = BAXR™Y — gV (X"
* Update with the averaged gradients instead of the current one
Xkl =Xk AXK

* |ntuition:
* Larger steps when gradients keeps the same direction
* Smaller steps when gradients flip directions

 Gradient Descent with.Momentum

XK+ = xl —nvf(x*) +
momentum

Startng Powt
Optimum

2/28 : Copyright @ 111S, Tsinghua University 29

Sontan

Accelerated Methods

e The momentum method
Xk+1 — Xk . T]Vf(Xk) + B(xk _Xk—l)
* For each iteration

cture 3, Deep Learning, 2025 Spring

Accelerated Methods

e The momentum method
Xk+1 — Xk . T]Vf(Xk) + B(xk _Xk—l)
* For each iteration
* Compute the current gradient

Lecture 3, Deep Learning, 2025 Spring

Accelerated Methods

OpenPsi @ I111S

e The momentum method
Xk+1 — Xk . TIVf(Xk) + B(xk _Xk—l)
* For each iteration

* Compute the current gradient

e Add [-scaled previous step
e Actually the running averagéfrom the-previous iteration

Lecture 3, Deep Learning, 2025 Spring

Accelerated Methods

OpenPsi @ I111S

e The momentum method
Xk+1 — Xk . TIVf(Xk) + B(xk _Xk—l)
* For each iteration
 Compute the current gradient

e Add [-scaled previous step
* Get the final direction

33

Lecture 3, Deep Learning, 2025 Spring

OpenPsi @ I111S

Accelerated Methods

* The momentum method

Xk+1 — Xk . TIVf(Xk) + ,B(Xk _Xk—l)
* For each iteration

 Compute the current gradient
e Add [-scaled previous step
* Get the final direction

* Convergence Rate? Unfortunately no... disprove it in your homework ©

2/28 ight @ I11S, Tsinghua Uni i

34

Lecture 3, Deep Learning, 2025 Spring

Accelerated Methods

OpenPsi @ I111S

* Nesterov’s accelerated gradient descent
Xk+1 — Xk . T]Vf (Xk 1+ ﬁ(Xk _Xk—l)) 1 ﬁ(Xk _Xk—l)

* For each iteration
 Compute the current gradient evaluated at the resultant location
* Add [-scaled previous step

. he final direction
Get the final directio Polyak's Moihentum Nesterov Momentum

2/28 IQopyriqht @ 111S, Tsinghua University 35

Lecture 3, Deep Learning, 2025 Spring

Accelerated Methods

OpenPsi @ I111S

* Nesterov’s accelerated gradient descent
Xk+1 — Xk . T]Vf (Xk n ﬁ(Xk —Xk_l)) 1 ﬁ(Xk _Xk—l)

* For each iteration
* Compute the current gradient evaluated at the resultant location
* Add [-scaled previous step
* Get the final direction

Class of Function GD NAG
Smooth O(1/T) O(1/7T?)
Smooth & Strongly-Convex O (exp (—L)) O (e;rp (—\%))

L
2/28 K = ; L > u, (some directiorf*hagtia¥ge'gradigfitthanges) the improvement becomes significaft

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Convex Optimization: Summary

* Take-Aways
* Adaptive learning rates help convergence

* Gradient descent maybe too slow or unstable due to inconsistency between
dimensions

* Second-order methods normalize dimensions but too expensive

* Momentum methods emphasizes the directions of steady improvement and
can significantly improve-naive GD

e Let’s switch to neural networks!

2/28 Copyright @ 111S, Tsinghua University 37

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Optimization for Neural Networks

Input

Hidden L
Layer idden Layers

* Learning a neural classifier
.]_ . «
* Loss function L(0) = Nzi err(f(x‘; 9); yl)
* Goal: minimize L(0) w.rt. 0

Input: vector of Output: Class prob

* Gradient descent pixel values
 Backpropagation for each training sample L;(6) = Vgerr(f(xi; 9); yi)
» Average gradients over N'samplesVL(60) = %Zi VoL;(0)
. gk+1 gk _ nkVL(Hk)

e What if N is large?

2/28 Copyright @ 111S, Tsinghua University 38

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Optimization for Neural Networks

 Stochastic Gradient Descent
* Given training data X = {(xi,yi)}
 Random sample a data point (xj,yj) eX
* Incremental update: 8%*1 « 9% —y*VL (%)

 Remark
* An unbiased gradient estimate: VL(6) = E;[VL;(0)]
* Extremely efficient computation but may suffer from the variance
* We can also applyacyclicrule:j =1,2,...,N

* (refer to your-machine learning course materials!)

2/28 Copyright @ 111S, Tsinghua University 39

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Optimization for Neural Networks

* Convergence Condition
* A diminishing learning rate: Y, n* = o and) nkz <
* Typical usage: n® oc%
* Why wouldn’t a constant learning-rate work?

* Convergence Rate (ML Course Recap.)

» Convex function: E|f(X¥)| — f="0 (\/%

» Strongly convex function:E[f(X*)| — f* =0 (i)

) (no improvement w. L-smooth)

* Recap of GD: O(1/k) for convex and L-smooth and linear for strongly convex
* SGD is slightly worse (we will try to improve it later)

2/28 Copyright @ 111S, Tsinghua University 40

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Optimization for Neural Networks

* Mini-batches!
* We choose a random subset of indices [< {1, ...;,IN } and |Ij| = b (batch-size)
e X = {(xi,yi):i € Ij}: a mini-batch of training data
* L;,(0) = %Ziaj L;(0) estimate the gradient over a mini-batch
. gk+1 — gk _ URVLIJ-(HR)
* Mini-batch gradient is still.an unbiased estimate of the gradient
* Reduce the variance by%
* Practical Use:
 Randomly split X into % mini-batches (an epoch)

* Run mini-batch gradient descent over these pre-split mini-batches

2/28 Copyright @ 111S, Tsinghua University 41

Lecture 3, Deep Learning, 2025 Spring

Optimization for Neural Networks

* Example
 Logistic regression (strongly convex)
« d = 20 dimensions, n = 10* data points, fixed learning rate

2/28

Criterion fk

\ — Full
\ —— Stochastic
g\J\ — Mini-batch, b=10
o || ‘, —— Mini-batch, b=100
© | | |
= ' '
o
LQ —
o
w
LO_ |
o
o
LQ —
o
[[[[I I
0 10 20 30 40 50

Iteration number k

0.65
|

Criterion fk
0.60
|

0.55
|

0.50

ull

tochastic
ini-batch, b=10
ini-batch, b=100

. le+02
Copyright @ 111S, Tsinghua University

1e+04 1e+06

Flop count

OpenPsi @ I111S

In practice, start with a
large batch size when
computation permitted

42

Lecture 3, Deep Learning, 2025 Spring

Optimization for Neural Networks

* Why do we use mini-batch for neural networks
* Computation variance trade-off: GD too‘expensive;’SGD too noisy

* Noise can sometimes help escape local'minimum / saddle point
(with assumptions, refer to your ML course!)

On Nonconvex Optimization for Machine Learning: Gradients,
Stochasticity, and Saddle Points

Chi Jin Praneeth Netrapalli
University of California, Berkeley Microsoft Research, India
chijinfcs.befkeley. cdd praneethfmicrosocft.com
Rong Ge Sham M. Kakade
Duke University University of Washington, Seattle
ronggefics. . duke . edu shamfics.washington.edu

Michael 1. Jordan
University of Califormia, Berkeley
jordanfics.berkeley.edu

2/28 Stpf‘@m@ﬁﬁ M§§.9Tsinghua University

OpenPsi @ I111S

43

Lecture 3, Deep Learning, 2025 Spring

OpenPsi @ I111S

Optimization for Neural Networks

* Why do we use mini-batch for neural networks
* Computation variance trade-off: GD too‘expensive;’SGD too noisy

* Noise can sometimes help escape local'minimum / saddle point
(with assumptions)

* Popular hypothesis in deeplearning

* Saddle points are far more .common than local minima
(exponential in network size)

» Saddle points: Gradient is 0 and Hessian with both pos/neg eigenvalues
* Most local minima are equivalent and close to global optimum
 NOT TRUE for,smallhnetworks or in other domains like deep RL

2/28 Copyright @ 111S, Tsinghua University 44

Lecture 3, Deep Learning, 2025 Spring

C.

2/28

OpenPsi @ I111S

Baldi and Hornik (89), “Neural Networks and Principal Component
Analysis: Learning from Examples Without Local Minima”+An MLP with a
single hidden layer has only saddle points and.no local Minima

Dauphin et. al (2015), “Identifying and-attacking the saddle point problem *
in high-dimensional non-convex optimization” + An exponential number of
saddle points in large networks

Chomoranksa et. al (2015), “The loss surface of multilayer networks” : For \g
large networks, most local'minima lie in a band and are equivalent

— Based on analysis.of spin glass models

Swirscz et. al. (2016), “Local minima in training of deep networks”, In
networks of finite size, trained on finite data, you can have horrible local
minima

Copyright @ 111S, Tsinghua University 45

Lecture 3, Deep Learning, 2025 Spring

Optimization for Neural Networks

* Can we improve Mini-Batch GD?

e Recap: Inspirations from Convex Optimization
* Adaptive learning rate
* Decouple learning rate for dimensions
e Second-order approximation can help (scaling axis)
* Momentum helps

* SGD Variants for deep learning
 AdaGrad; RMSProp; Adam; ...

2/28 Copyright @ 111S, Tsinghua University

OpenPsi @ I111S

46

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Optimization for Neural Networks

* A closer look at gradient descent

» Standard accelerated methods still have'oscillations
* Observation: Steps in “oscillatory” directions-show large total movement
* |ldea: slow down learning rate in directions.with high motion

* Still high-order methods
N

+2.5

(2 I R S TR N R .Y
N W R
4.

N
Wy

Copyright @ 111 onua University

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Optimization for Neural Networks

* A closer look at gradient descent
» Standard accelerated methods still have'oscillations
* Observation: Steps in “oscillatory” directions-show large total movement

* |ldea: slow down learning rate in directions.with high motion
* Still high-order methods

2/28 Copyright @ 111S, Tsinghua University 48

Lecture 3, Deep Learning, 2025 Spring

AdaGrad

OpenPsi @ I111S

* AdaGrad Algorithm (Duchi et al, 2011)
.« g =Vuf(0%)
c Gf =G+ |g£‘|2 (accumulated gradient'square for each weight)
« OFt1 =gk — Lg{‘ (annealing learning rate for each weight)

Gf+e

 Remark
* No need to tune learning rate (in‘practice fixn = 0.01, ¢ = 10~

* Decoupled learning rate for.each dimension
* GLoVe use AdaGrad for word embeddings, so rare words have higher learning rate

* Weakness: learning rate decays too quickly

°)

2/28 Copyright @ 111S, Tsinghua University 49

Lecture 3, Deep Learning, 2025 Spring

RMSProp

OpenPsi @ I111S

 RMSProp Algorithm (by Hinton, in his lecture notes, ~ 2012)
.« g =Vuf(0%)
. GZ‘ =)/Gf‘_1 + (1 — y)|g£‘|2 (moving average of square gradient)

k+1 _ pk d k
* 0 =0 ——g,
Gf+e
e Remark

* Address the vanishing learning rate for AdaGrad
* Works particularly. well for RNNs

2/28 Copyright @ 111S, Tsinghua University 50

Lecture 3, Deep Learning, 2025 Spring

Adam

OpenPsi @ I111S

* Adam algorithm (Diederik P. Kingma & Jimmy Ba, 2014, arxiv)
* RMSProp with Momentum, the most popular optimizer, >200k citations
.« g* =Vyf(6%)
e M =Mt + (1 —8)gF (momertum)
c Gf =yGF T+ (1 - y)|g{‘ ’ (RMS of square gradient)

= % Gk = - (ensureyy and 6 terms do not dominate in early

e Remark
x5 o Particularly effective for RNNygenerativermodels, RL o

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Optimizers for Deep Learning

A visualization by (Alec Radford, recently retired from OpenAl)

2/28 Copyright @ 111S, Tsinghua University 52

Lecture 3, Deep Learning, 2025 Spring

Optimizers for Deep Learning

OpenPsi @ I111S

A visualization by (Alec Radford, recently retired from OpenAl)

: e —
sgd S — SGD .
momentum [— Momentum::
—_ agra

]
adagrad o Adadelta
adadelta I

I
rmsprop, |

o

3 5 =

0 20
2/28

40 60

Noisy Moon

80

100 120

Copyright @ I11S, Tsinghua University

o
e
-

—
i
e
—

Beale’s Function

53

Lecture 3, Deep Learning, 2025 Spring

Optimizers for Deep Learning

A visualization by (Alec Radford, recently retired from OpenAl)

Ute i
)
? R

4#3# Aty
4 : ”5‘* qf/frﬂx gty

SGD
Momentum
NAG
Adagrad
Adadelta
Rmspmp

-r.a-,l" 4
¥
f

Long Valley

2/28

fﬁﬁh o
i ﬁﬂg

Copyright @ I11S, Tsinghua University

Saddle Point

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

U-I.U

OpenPsi @ I111S

54

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Today’s Lecture

e Get your hand more dirty!

* Part 1: design a better learning algorithm
* More tricks to play with gradients

e Part 2: more tricks for practical classification
 Start to get professionaldn.tuning!

* Part 3: advanced architectures
* Part 4: cloud computing tutorial

2/28 Copyright @ 111S, Tsinghua University 55

Lecture 3, Deep Learning, 2025 Spring

More Tricks Approaching!

* So Far

e Common optimizers to minimize the loss
* SGD, Momentum, AdaGrad, RMSProp, Adam

e Overfitting!
* Neural networks are universal functions
* Overfitted responses facilitated by-large weights

0.3 |

2/28 Copyright @ 111S, nghua Universityg, |

0
N

OpenPsi @ I111S

56

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

More Tricks Approaching!

* So Far

e Common optimizers to minimize the loss
* SGD, Momentum, AdaGrad, RMSProp, Adam

e Overfitting!
* Neural networks are universal functions
» Overfitted responses facilitated by:large weights - Weight Decay (L2-norm)

08|

w=5

Y a
07
r—r—r——r—
0.8 {
| More?
04! |
X
. 0.2
2/28 Copyright @ 111S, jn,qhua Universityg.1 | ! 57
7

0
N

Lecture 3, Deep Learning, 2025 Spring

Tricks in AlexNet

OpenPsi @ I11S

* AlexNet (Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton, 2012)
* First deep learning breakthrough in image classification

5 Convolutional Layers

AN

N\

M FULL CONNECT 4Mflop

16M FULL 4096/RelLU 16M
37M FULL 4096/RelLU 37M

2/28

3 Fully Connected Layers

8 = 452 Y q—‘us se
- N 1¥ 3 13 \
. - SAwS 1000-way
Y |t IS :
o\ _\ IS o rm softmax
\ ~J58 ;
p 192 192 128 Max
Max 128 Max pooling 048

!

Copyright @ IN11S, Tsinghua University

Lecture 3, Deep Learning, 2025 Spring

OpenPsi @ I11S

Tricks in AlexNet

* AlexNet (Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton, 2012)
* First deep learning breakthrough in imageclassification
e RelLU activation and overlapping pooling 4aM FULL CONNECT 4Mfiop

5 Convolutional Layers

16M FULL 4096/RelLU 16M

37M FULL 4096/RelU 37M
] [F—3} g

3 Fully Connected Layers

2/28

= = \}, 13M [CONV 3x3ReLU 384fm oo
= = = R 884k | CONV 3x3/ReLU384fm .o
15 13 13

. 3 = AN\ 1000-wa e T e
) N 4 5 MAX POOLING 2x2sub

_ = L IS 13 ense’ | den SOfUnaX - - :
s g a2 192 178 Max

Max 128 Max 4

pooling pooling

Copyright @ IN11S, Tsinghua University

Lecture 3, Deep Learning, 2025 Spring

Tricks in AlexNet

OpenPsi @ I11S

* Data Preparation and Augmentation
* Subtract the mean activity over the training set from each pixel
e Crop 224x224 patches (and their horizontal reflections.)
» At test time, average the predictions'on the 10 patches (ensemble)

* Change the intensity of RGB channels, add PCA components
I, Ig, Ig] += a[PR:PG'PB][AR»/lGJ/lB]T» a ~ N(0,0.1)

2/28 Copyright @ I11S, Tsinghua University 60

Lecture 3, Deep Learning, 2025 Spring

Tricks in AlexNet

OpenPsi @ I111S

* Data Preparation and Augmentation

* Subtract the mean activity over the training set from each pixel
Crop 224x224 patches (and their horizontal reflections.)
At test time, average the predictions'on the 10 patches (ensemble)

Change the intensity of RGB channels, add PCA components
[Ir, Ig, 1] += a[Pg, P, PsHARy A, A]", & ~ N(0,0.1)

* Rotation, stretching, flipping; etc

i " N T BN
More data augmentation tricks % - % | ﬂ a

2 % -

2/28 Copyright @ 111S, Tsinghua University L A
CocaColaZerol_S.png CocaColaZerol_fpng CocaColaZerol_T.png

Lecture 3, Deep Learning, 2025 Spring

Tricks in AlexNet

OpenPsi @ I111S

* Dropout

* Training: for each input, at each iteration, randomly “turn off” each neuron
with a probability 1 — «

2/28 62

Lecture 3, Deep Learning, 2025 Spring

Tricks in AlexNet

* Dropout

OpenPsi @ I111S

* Training: for each input, at each iteration, randomly “turn off” each neuron

with a probability 1 — «
* Intuition: randomly cut off some connectionsandneurons

‘?/‘. ‘1 |

\' A

V{)V
A

2/28 iversity

63

Lecture 3, Deep Learning, 2025 Spring

Tricks in AlexNet

OpenPsi @ I111S

* Dropout

* Training: for each input, at each iteration, randomly “turn off” each neuron
with a probability 1 — «
* In practice, we change a neuron to 0.by.sampling a Bernoulli variable with prob. 1 — «

2/28 64

Lecture 3, Deep Learning, 2025 Spring

Tricks in AlexNet

OpenPsi @ I111S

* Dropout
* Training: for each input, at each iteration, randomly “turn off” each neuron
with a probability 1 — «
* In practice, we change a neuron to 0 by.sampling a Bernoulli variable with prob. 1 — «
 Random “turn-off” prevent overfitting'to particular neurons or weights

Inpu
N
QOutput
; 1; I'u 'i..r,;
X i Y.
1 PARL 1

RS,
'*:?ra- !"'i ih‘.’f&

2/28

Lecture 3, Deep Learning, 2025 Spring

Tricks in AlexNet

OpenPsi @ I111S

* Dropout

* Training: for each input, at each iteration, randomly “turn off” each neuron
with a probability 1 — «
* In practice, we change a neuron to 0 by.sampling a Bernoulli variable with prob. 1 — «
 Random “turn-off” prevent overfitting to particular neurons or weights
e Gradient only propagated from nen-zere _neurons

2/28

Lecture 3, Deep Learning, 2025 Spring

OpenPsi @ I11S
* Understanding Dropout
* Dropout forces the neural network to learn redundant patterns
* Dropout can be viewed as an implicit L2 regularizer
Dropout Training-as Adaptive Regularization
Stefan'Wager®, Sida Wang', and Percy Liang'
Departments of Statistics* and Computer Science!
Stanford University, Stanford, CA-94305
swagerfstanford.edu, {sidaw, pliang}@cs.stanford.edu
Abstract
2/28 Copyright @ I11S, Tsinghua University 67

DleDllt and other feature noising schemes control overfitting by artificially cor-

Ty (U L. (U [R (RS (N (S (U (SR (T (N

Lecture 3, Deep Learning, 2025 Spring

OpenPsi @ I111S

Tricks in AlexNet

* Dropout changes the scale of the output'neuron
* y = Dropout(o(),; w;x; + b))
* Ely] = aElo(X;w;ix; + b)]

* Dropout at Inference Time
vy =ao(); w;x; + b) ‘expected output of the neuron

2/28 Copyright @ 111S, Tsinghua University 68

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

More Tricks

* Early Stopping
e Continue training may lead to training data overfitting
* Track performance on a held-out validation set

error validation

traming

epochs

2/28 Copyright @ 111S, Tsinghua University 69

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

More Tricks

* Initialization
e Zero initialization makes all neurons learn the same’pattern

2/28 Copyright @ 111S, Tsinghua University 70

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

More Tricks

* Initialization
 Zero initialization makes all neurons learn'the same’pattern - random init

2/28 Copyright @ 111S, Tsinghua University 71

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

More Tricks

* Initialization
 Zero initialization makes all neurons learn'the same’pattern - random init
* Atoo-large initialization leads to exploding gradients

2/28 Copyright @ 111S, Tsinghua University 72

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

More Tricks

* Initialization
 Zero initialization makes all neurons learn'the same’pattern - random init
* A too-large initialization leads to exploding gradients - small init

2/28 Copyright @ 111S, Tsinghua University 73

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

More Tricks

* Initialization
 Zero initialization makes all neurons learn'the same’pattern - random init
* A too-large initialization leads to exploding gradients - small init

* Design Principle
* Zero activation mean
e Activation variance remains same across layers

2/28 Copyright @ 111S, Tsinghua University 74

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

More Tricks

* Initialization
 Zero initialization makes all neurons learnthe same’pattern - random init
* A too-large initialization leads to exploding gradients = small init

* Design Principle
« Zero activation mean =2 value at @ (softsign, tanh) or large gradient (sigmoid)
e Activation variance remains same across layers
—> prevent gradient vanishing/exploision

2/28 Copyright @ 111S, Tsinghua University 75

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

More Tricks

 Xavier Initialization (Xavier Glorot & Yoshua Bengio, AISTATS10)

o b(k) — (0
« WHE ~ynif + ve
Vg +Ngq
* n, hidden size of layer k (fan-in); ny ., {fan-out)

* Experiments from the paper(tanh-activation)

0057 A A
E —Layer 1

g ; . Layer 2

?LJD o S f | f ' - |~ Layer3

= : : i : : :

'%D \ N — Layer 4

= WA Layer 5

0'05 [) 1 \| - | | I 1 | 1 1
0 10 20 30 40 50 60 70 80 90
Epochs of 20k minii b chRRIASS i 7%

2/28

Lecture 3, Deep Learning, 2025 Spring

More Tricks

e Kaiming Initialization (Kaiming He et al., 2015)

o b(k) — (0
e WO ~ynif + Y2

Vik
* Only fan-in
* Remark

* Designed for RelLU activation
* Results for a 30-layer. network

0.75+

1
F— EﬁlVar[wl] =1 ours

-- mVar[w] =1 Xavier

2/28 Copyright @ 111S, TsinBhua University 2 3 4 5 6 7 8 9

OpenPsi @ I111S

77

Lecture 3, Deep Learning, 2025 Spring

More Tricks

* Initialization by pretraining
* Use a pretrained network as initialization
* And then fine-tuning (a few layers or the whole network)

]
Source Domain | Target Domain
]

Qutput Dimension: N , Qutput'Dimension: M
1 J | | J

T : T
Initialize

| .. 1

Source Model ——— Source Maodel

Target
Dataset
(Dog Breeds)

Source Dataset
(ImageNet)

]
2/28 Copyfiqht @ 111S, Tsinghua University
i

OpenPsi @ I111S

78

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

More Tricks

* Gradient Clipping
* The loss can occasionally lead to a steep decent
* This can result in immediate instability

* If VO;> 5, then set VO, to 5. (you can also scale the norm of |V8|)

Loss

.

2/28 Copyright @ TITS, Tstngiua University > 79

Lecture 3, Deep Learning, 2025 Spring

More Tricks: Covariance Shift

* The problem of covariance shift

* Assumption: mini-batches share a similar data distribution
» Reality: each minibatch may have a different-distribution

e Covariance shift

* |t can also cause covariance shiftfor different layers

2/28

N

Copyright @ 111S, Tsinghua University

OpenPsi @ I111S

80

Lecture 3, Deep Learning, 2025 Spring

OpenPsi @ I111S

More Tricks: Covariance Shift

* The problem of covariance shift
e Assumption: mini-batches share a similar data distribution
* Reality: each minibatch may have a different-distribution
e Solution: make each batch same mean and.standard deviation for training

-

Copyright @ I11S, Tsinghua Universi

2/28

81

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Batch Normalization

e BatchNorm Layer (Sergey loffe & Christian Szegedy, 2015, 60k cites)

* u; : scaled activations with zero-mean.-and unit std-dev
* Z2; = yu; + [: Then shift to a proper location, ¥, 5 are parameters

iy -~
| Z = Z wit; + b
12)'
[Batch normalization A
[] Z A A
e TR {f(2) y
L]
iy
Minibatch size Minibatch mean
iN //’/,,m II|
ol / Minibatch standard deviation
pd |

+
B 7. — H"
1 1 L i B /_
—_E . 2__§)2 b . C Zi=yui+ B
2/28 HUp = Zi| |og = B (ZI. HB) onyright @ Ill%gsu]ghléa niversity-L L 82
i=1

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Batch Normalization

* BatchNorm at Training Time
» Standard Backprop performed for each single training data

2/28 Copyright @ 111S, Tsinghua University 83

Lecture 3, Deep Learning, 2025 Spring

OpenPsi @ 111S
Batch Normalization
* BatchNorm at Training Time
» Standard Backprop performed for each single training data
* Now backprop is performed over the entire bateh (derivation skipped)
dDiv -1 -3 dDiv
60’B 2 JB+E) /Z du;
6Dw BDw
Iy oDiv (9Div 1 aDiv 2(z; —ug) 0dDiv 1
=5 "/JBz—+_E+ 3o B om B
"- u Z {f(f)}——'y
Batch normalization
“" THETE o LB RS from 2 o

Lecture 3, Deep Learning, 2025 Spring

Batch Normalization

* BatchNorm at Training Time

» Standard Backprop performed for each single training data
* Now backprop is performed over the entire batch (derivation skipped)

* BatchNorm at Inference Time

* We need to estimate pg.and oz
* (Running) Average of training mini-batches!

1
* Hp = yparon Zibatcn Kp (batch)
2 _ 1 B 2
* Op = N batch’ B-1 Zbatch og(batch)

2/28 Copyright @ 111S, Tsinghua University

OpenPsi @ I111S

85

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Batch Normalization

* BatchNorm at Training Time
» Standard Backprop performed for each single training data
* Now backprop is performed over the entire batch (derivation skipped)

* BatchNorm at Inference Time

* We need to estimate pg.and oz
* (Running) Average of training mini-batches!

1
* Hp = yparon Zibatcn Kp (batch)
2 1 B

* 0 = Y watch 0p (batch) € unbiased variance estimator

N batch” -B—1

2/28 Copyright @ 111S, Tsinghua University 86

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Batch Normalization

e Remarks

* Evidently, no dropout necessary (or tinydropout'rate) with batch norm
e Batch norm applies to specific layers (most pepular in convolution layer)
e Larger learning rate and faster decay/(data-always in high gradient region)

0.8
0.7F -

0.6

- = = [nception
. - = BN-Baseline
054" ++ BN-x5
BN-x30

+ -+ BN-x5-Sigmoid
4 Steps to match Inception
HghudbRtversiey - ! 87

| 20M 25M 30M

2/28 04

Lecture 3, Deep Learning, 2025 Spring

Layer Normalization

e LayerNorm layer (Jimmy Ba, Jamie Kiros, Hinton, 2016)
» Scales the mean and std-dev of a hidden layer

ht = I {% () (:aE — ;ff) + b} J.nrE — E Z n”!§

* Remark:
e Batch-independent
 Particularly suitable for RNN
* It also works extremely well for MLPs

2/28 Copyright @ 111S, Tsinghua University

1 H
= E; (af — pt)”

OpenPsi @ I111S

88

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

More Regularizations

* WeightNorm
 Suitable for meta-learning setting when'high order-of gradients are computed

* InstanceNorm
* Batch-independent, suitable for generation tasks

* GroupNorm (by Yuxin Wu & Kaiming He)

* Batch-independent, improve BatchNorm for small batch size

2/28 Copyright @ 111S, Tsinghua University 89

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Today’s Lecture

e Get your hand more dirty!

* Part 1: design a better learning algorithm
* More tricks to play with gradients

* Part 2: more tricks for practical classification
 Start to get professionalin.tuning!

e Part 3: advanced architéectures

* Part 4: cloud computing tutorial

2/28 Copyright @ 111S, Tsinghua University 90

VGG-19 34-layer plain 34-layer residual
Lecture 3, Deep Learning, 2025 Spring image image image
ot [e] OpenPsi @ I11S

poal, /2

autput

| size: 12
E E S I u a EE W O r — | adconvi2e | [77conv 64,2 | [T |
v M :

I roo 2 oo -5 err.

—— e T e, 256) T [33covea |
; : 33
3x3 conv, 256 [3aconves | ETTE vt o
2
3x3 conv, 256 [3x3 conv, 64 3x3 covnvj 54
L] | ¥

L 3dconv, 256 |

* ResNet (Kaiming He, et al., 2015)

3x3 conv, 128, /2

output

size: 28 3x3 conv, 51
4

3x3 conv, 128

* ImageNet 2015 Champion
* First “deep” network with >100 layers!
\ 4

7x7.conv, 64, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

v
3x3 conv, 128

3x3 conv, 128

3x3 conw, 128

¥
3x3 conv, 256, /2

| |
] |
I] I
[] [
[| |
[] [
[| [
[| [
[] [
e poal, /2 [2] [
* | 33conv,512 | | 3d3conv, 256 | [33com256 | |
X pOOI' /2 [3:300;v, 512 | [3aconvzs6 | [SZSm;v, zst;-mi‘ oDS
v | 3x3conv,512 | | 33conv, 256 | | 3acomv256 | 7 1
[m3comv,s12 | [maconvzs6 | [s3conv2s6 | .
we|ght IE",F'EI" 3x3'cony, 64 T | Sximzv, B] | 31(3mtv,256_|
- v [33conv,256 | [3x3comw,2%6 |
F(x } ¥ re I u 3x3 co nv, 64 [wacon, 6 | [3a cn:\r, P
X [33conv.256 | s ca;v, 256
H [33conv,256 | | 3x3conv, 256
weight layer identity 3x3 conv, 64 e
* | 33conv,256 | [3x3conv, 256
3 X3 conv, 64 ::;Lem;t poal, /2 [EE :un: 512,72 | [EE mn;,' 512,72 |
F(X) + X [3x3comv,512 | [33 con, 51_2'] _______
[3x3conv,s12 | | 3x3conv, 512
3x3 cony, 64 [®acomw,s2z | [3a mtv, sz |
. v [3a on:\n 512 | [33 conv,512
RESlduaI BlOCk [3x3mtu,sn | [z:emtmsu
2/28 gt Voo oidersi el ws:m oo 01
e cna [fc 4096 I fc 1000] fc 1000

Y .
Ixdcony, 256,12 | e, .71
v Y

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Residual Network

e Residual Connection
z = o(f(x) +x)
e Justification from the paper

* A trivial solution with good precondition for-arbitrarily deep network
w &) =1

* Hypothesis: hard to learn identity but easy to learn zero
* Solution: fit the residualfunction H(x) = f(x) — x
* True story
* One day a bug happened and you see extremely good valid error...

* Fun story about {o]'{2BH
e 200375 L ERITT . first paper out at PhD 3" year, CVPR 09 best paper
* BP at CVPR 2016, ICCV 2017, BP 'honorable mention ECCV2018 Do solid research!

2/28

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Densely Connected Network

* Shallow networks to achieve the same performance of ResNet?
* DenseNet (by =5 & XI)[T, et al, 2016, CVPR17 best paper)

* Take outputs of all previous layers
* Directly get information flow from all layers

* |[ssue:
* Network maybe too wide
* Need to be careful about memory consumption

Prediction

Dense Block 2

Dense Block 1 Dense Block 3

‘horse”

S
3
=
=
=3
(=]
3

UOIIN|OAUOD

Lecture 3, Deep Learning, 2025 Spring

Deconvolution

* Image Classification
* From high-dimensional to a low-dimensional output
e Convolution / pooling to keep down-sampling the image

o = Output
o . Output
) w Cat
:-.. S
o) N

* The reverse order?
* [abel 2 image?
* image =2 image?

2/28 Copyright @ 111S, Tsinghua University

OpenPsi @ I111S

94

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Fully Convolutional Network (Revisited)

* FCN for Semantic Segmentation (Long et‘al, 2014)
* First example of fully convolutional network
* Image to segmentation mask
* Use deconvolution layer to up sampling an.image/map
* More to use in generative models!

forward /inference

backward /learning

qﬁ qﬁ) 21

2/28 95

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Summary

* The tricks today!
* Optimizers
* SGD, Momentum, RMSProp, Adam, etc
e Regularization techniques :
* Initialization, clipping, early stopping; data proces {8 ,; e U IS
* Regularization layers (Dropout, BatchNorm, Laye /| e bt
* Architecture

Deep Learning

. . | ulfl
* Residual Connection “g &
* FCN 2
* And more to come (later in this.course and in com _ _f_ Meecingl N

What mathematicians think | do What | think | do What | actually do

* You are now ready for becoming a tuning professional!

* General hints:
* First overfit, then regularize; L-rate deca cay, Learn from well-tuned architectures

2/28 Copyright @ I11S nghua University 96

Lecture 3, Deep Learning, 2025 Spring
OpenPsi @ I11S

Today’s Lecture

e Get your hand more dirty!

* Part 1: design a better learning algorithm
* More tricks to play with gradients

* Part 2: more tricks for practical classification
 Start to get professionalin.tuning!

* Part 3: advanced architectures
* Part 4: cloud computing tutorial

2/28 Copyright @ 111S, Tsinghua University 97

